Mychorizae (beneficial fungi and other soil organisms)

Great reading! Thank you Tod at Morton Arboretum, and the authors (UBC) of this wonderful and fascinating look at how the woodlands are far more interconnected than we ever thought. JR Tolkien was WAY ahead of his time! 🙂

Twitter Facebook

UBC Botanical Garden

Donate online to help support Botany Photo of the Day


Type your email address below!


What is Botany Photo of the Day?

How to Submit a Photograph

Photograph Use and Attribution

Camera Equipment

Contact the BPotD Editor

Submit images via:


The Agrobiodiversity Grapevine

Dias Com Árvores

Festival of the Trees

Human Flower Project

Kew Blogs


UBC Botanical Garden Blog

Circus of the Spineless

Deep-Sea News

Invasive Species Weblog


The Firefly Forest

The Panda’s Thumb



Botany Photo of the Day
In science, beauty. In beauty, science. Daily.

« Previous entry: Macaranga sp. | Main | Archives | Next entry: Plant Communities »

Mycorrhizal Networks

ByDaniel Mosquin

(email) on March 6, 2010 9:00 AM 22 Comments” href=””>Cantharellus formosus” href=””>Mycorrhizal Network by Shannon Wright” href=””>Network by Kevin BeilerFamily / Families: Cantharellaceae
Name(s) and Author(s): Cantharellus formosus Corner

Today’s BPotD is the second in the series of BPotD’s contribution to the 2010 UBC Celebrate Research Week.

Lindsay organized today’s entry, selected the links, and introduces Dr. Suzanne Simard:

Dr. Suzanne Simard is a professor with the UBC Faculty of Forestry, where she lectures on and researches the role of mycorrhizae and mycorrhizal networks in tree species migrations with climate change disturbance. Networks of mycorrhizal fungal mycelium have recently been discovered by Professor Suzanne Simard and her graduate students to connect the roots of trees and facilitate the sharing of resources in Douglas-fir forests of interior British Columbia, thereby bolstering their resilience against disturbance or stress and facilitating the establishment of new regeneration.

Dr. Simard writes:

Mycorrhizal fungi form obligate symbioses with trees, where the tree supplies the fungus with carbohydrate energy in return for water and nutrients the fungal mycelia gather from the soil; mycorrhizal networks form when mycelia connect the roots of two or more plants of the same or different species. Graduate student Kevin Beiler has uncovered the extent and architecture of this network through the use of new molecular tools that can distinguish the DNA of one fungal individual from another, or of one tree’s roots from another. He has found that all trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests are interconnected, with the largest, oldest trees serving as hubs, much like the hub of a spoked wheel, where younger trees establish within the mycorrhizal network of the old trees. Through careful experimentation, recent graduate Francois Teste determined that survival of these establishing trees was greatly enhanced when they were linked into the network of the old trees.Through the use of stable isotope tracers, he and Amanda Schoonmaker, a recent undergraduate student in Forestry, found that increased survival was associated with belowground transfer of carbon, nitrogen and water from the old trees. This research provides strong evidence that maintaining forest resilience is dependent on conserving mycorrhizal links, and that removal of hub trees could unravel the network and compromise regenerative capacity of the forests.

In wetter, mixed-species interior Douglas-fir forests, graduate student Brendan Twieg also used molecular tools to discover that Douglas-fir and paper birch (Betula papyrifera) trees can be linked together by species-rich mycorrhizal networks. We found that the mycorrhizal network serves as a belowground pathway for transfer of carbon from the nutrient-rich deciduous trees to nearby regenerating Douglas-fir seedlings. Moreover, we found that carbon transfer was enhanced when Douglas-fir seedlings were shaded in mid-summer, providing a subsidy that may be important in Douglas-fir survival and growth, thus helping maintain a mixed forest community during early succession. This is not a one-way subsidy, however; graduate Leanne Philip discovered that Douglas-fir supported their birch neighbours in the spring and fall by sending back some of this carbon when the birch was leafless. This back-and-forth flux of resources according to need may be one process that maintains forest diversity and stability.

Mycorrhizal networks may be critical in helping forest ecosystems deal with climate change. Maintaining the biological webs that stabilize forests may help conserve genetic resources for future tree migrations, ensure that forest carbon stocks remain intact on the landscape, and conserve species diversity. UBC graduate student Marcus Bingham is finding that maintaining mycorrhizal webs may be more important for the regeneration and stability of the dry than wet interior Douglas-fir forests, where resources are more limited and climate change is expected to have greater impacts. Helping the landscape adapt to climate change will require more than keeping existing forests intact, however. Many scientists are concerned that species will need to migrate at a profoundly more rapid rate than they have in the past, and that humans can facilitate this migration by planting tree species adapted to warm climates in new areas. UBC graduate student Brendan Twieg is starting new research to help us understand whether the presence of appropriate mycorrhizal symbionts in foreign soils may limit the success of tree migrations, and if so, to help us design practices that increase our success at facilitating changes in these forests.

Daniel adds: Some housecleaning bits to add. Dr. Simard noted that a version of today’s BPotD appeared in the Faculty of Forestry’s newsletter Branch Lines, here: Simard, S.W. (2010) Why research matters to the forest systems of BC (PDF). Branch Lines, 20: 4-5. Dr. Simard also contributed the photograph of Cantharellus formosus. The illustration of the fungi and tree is courtesy of Shannon Wright. The schematic of the fungal network is by Kevin Beiler, and was published in: Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM. 2010. Architecture of the wood-wide web: Rhizopogon spp genets link multiple Douglas-fir cohorts. New Phytologist, 185: 543-553.


Share this entry: Google Bookmark Stumble Upon

« Previous entry: Macaranga sp. | Main | Archives | Next entry: Plant Communities »


Leave a Comment